Isolation Distributional Kernel: A new tool for kernel based anomaly detection

Kai Ming Ting & Bi-Cun Xu, Takashi Washio, Zhi-Hua Zhou {xubc, zhouzh}@lamda.nju.edu.cn kaiming.ting@federation.edu.au

Kernel Based Learning

In machine learning, kernel methods are a class of algorithms for pattern analysis, whose best known member is the support vector machine (SVM).

SVM with kernel given by $\varphi((a, b)) = (a, b, a^2 + b^2)$ and thus $K(\mathbf{x}, \mathbf{y}) = \mathbf{x} \cdot \mathbf{y} + \mathbf{x}^2$ \mathbf{y}^2 . The training points are mapped to a 3-dimensional space where a separating hyperplane can be easily found.

Isolation Kernel

Definition 1 For two instances $x, y \in \mathbb{R}^d$, Isolation Kernel of x and y wrt D is defined to be the expectation taken over the probability distribution on all partitioning $H \in \mathcal{H}_{\psi}(D)$ that both x and y fall into the same isolation partition $\theta \in H$:

 $K(x, y \mid D) = \mathbb{E}_{\mathcal{H}_{\psi}(D)} \left[\mathbb{I}(x, y \in \theta | \theta \in H) \right]$

where $\mathbb{I}(B)$ is the indicator function which output 1 if B is true; otherwise $\mathbb{I}(B) = 0$.

H

New Implementation of Isolation Kernel and Data-Dependent Property

Given a partitioning H_i , let $\Phi_i(x)$ be a ψ -dimensional binary column vector representing all hyperspheres $\theta_j \in H_i$, $j = 1, ..., \psi$; where x falls into either only one of the ψ hyperspheres or none. The j-component of the vector is: $\Phi_{ij}(x) = \mathbb{1}(x \in \theta_j | \theta_j \in H_i)$. Given tpartitionings, $\Phi(x)$ is the concatenation of $\Phi_1(x), ..., \Phi_t(x)$.

THEOREM 1. Given two probability distributions $\mathcal{P}_D, \mathcal{P}_{D'} \in \mathbb{P}$ from which points in datasets D and D' are drawn, respectively. Let $\mathcal{E} \subset \mathcal{X}$ be a region such that $\forall_{w \in \mathcal{E}}, \mathcal{P}_D(w) < \mathcal{P}_{D'}(w)$, i.e., D is sparser than D' in \mathcal{E} . Assume that $\psi = |\mathcal{D}|$ is large such that \tilde{z} is the nearest neighbour of z, where $z, \tilde{z} \in \mathcal{D} \subset D$ in \mathcal{E} , under a given metric distance ℓ (the same applies to $z', \tilde{z}' \in \mathcal{D}' \subset D'$ in \mathcal{E} .) Isolation Kernel κ_I based on hyperspheres $\theta(z) \in H$ has the property that $\kappa_I(x, y \mid D) > \kappa_I(x, y \mid D')$ for any point-pair $x, y \in \mathcal{E}$.

For exactly the same two points, the similarity as measured by Isolation Kernel derived from a sparse dataset is larger than that derived from a dense dataset.

Isolation Distributional Kernel and Applying to Anomaly Detection

Definition 1. Isolation Distributional Kernel of two distributions \mathcal{P}_S and \mathcal{P}_T is given as:

$$\begin{aligned} \widehat{\mathcal{K}}_{I}(\mathcal{P}_{S}, \mathcal{P}_{T}|D) &= \frac{1}{|S||T|} \sum_{x \in S} \sum_{y \in T} \kappa_{I}(x, y|D) \\ &= \frac{1}{t|S||T|} \sum_{x \in S} \sum_{y \in T} \langle \Phi(x|D), \Phi(y|D) \rangle \\ &= \frac{1}{t} \left\langle \widehat{\Phi}(\mathcal{P}_{S}|D), \widehat{\Phi}(\mathcal{P}_{T}|D) \right\rangle \end{aligned}$$

where $\widehat{\Phi}(\mathcal{P}_S|D) = \frac{1}{|S|} \sum_{x \in S} \Phi(x|D)$ is the empirical feature map of the kernel mean embedding; and Isolation Kernel: $\kappa_I(x, y|D) = \frac{1}{t} \langle \Phi(x|D), \Phi(y|D) \rangle$.

PROPOSITION 1. Under the conditions on $\mathcal{P}_D, \mathcal{P}_{D'}, D, D'$ and \mathcal{E} of Theorem 1, given two distribution-pairs $\mathcal{P}_S, \mathcal{P}_T \in \mathbb{P}$ where the sup-

ports of both \mathcal{P}_S and \mathcal{P}_T are in \mathcal{E} , the IDK $\widehat{\mathcal{K}}_I$ based on hyperspheres $\theta(z) \in H$ has the property that $\widehat{\mathcal{K}}_I(\mathcal{P}_S, \mathcal{P}_T | D) > \widehat{\mathcal{K}}_I(\mathcal{P}_S, \mathcal{P}_T | D')$.

Conclusion

- ▲ New Implementation of Isolation Kernel.
- ◆ Prove the data dependent property of the new Isolation Kernel.
- ◆ Validity of the new Isolation Distributional Kernel (IDK): Injective. Isolation kernel is positive definite and a characteristic kernel.
- ▲ IDK is an effective and efficient kernel-based anomaly detector.